EXAMPLE 2 PV EVOLUTION LABS Advancing solar

Reliability Demonstration Test

Jenya Meydbray, CEO Jenya@PVEL.com 415.335.9710

INFO@PVEL.COM - www.PVEL.com

ADVANCING SOLAR

Overview

For companies developing PV products and projects, PVEL is the premier solar panel performance and reliability testing lab.

We provide secure, expert testing and validation services so you can be confident that you're making intelligent decisions based on the most reliable data.

ADVANCING SOLAR

Capabilities

- We specialize in 3rd party performance and reliability reports for Bankability, R&D, and manufacturing.
- State-of-the-Art indoor lab facilities in Berkeley
- Outdoor Research Center in Davis called PV-USA

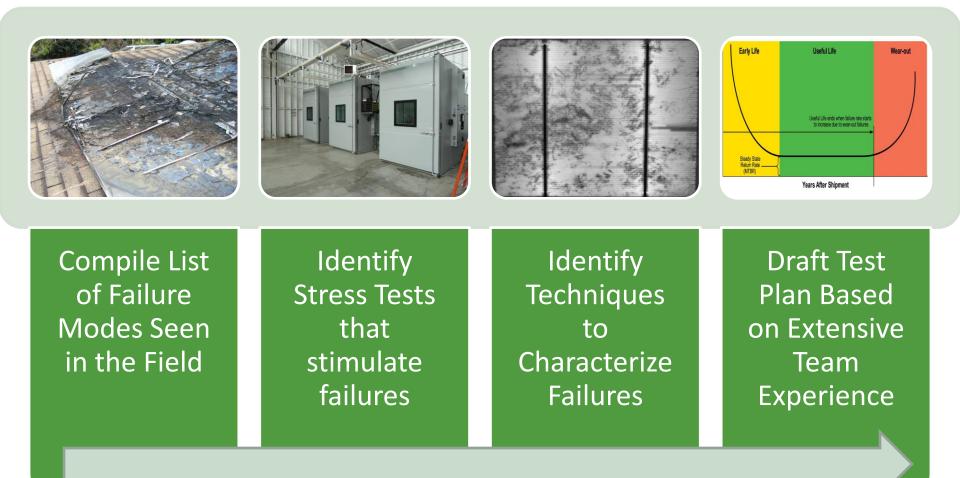
Why do we need testing?

<u>Technical</u>

- Solar panels deployed today will be under warranty in 2035
 - Your unborn children will be graduated from college

What	Range	Target
Initial Light Soak	+5% to -5% max power	+5% to -1%
Annual Degradation	0 to over -5% max power	0 to -0.5%
Catastrophic Failures (recalls/fires)	0 to 100%	minimal

Why do we need testing?


Commercial

- Project finance and insurance providers are risk averse
 - > 600 active PV module manufacturers (many more launching soon)
 - Module quality control in project dev is not widely adopted yet
 - Panel degradation and system downtime significantly impact LCOE

$$LCOE = \frac{\text{Total Life Cycle Cost}}{\text{Total Lifetime Energy Production}}$$
The above LCOE equation can be disaggregated for solar generation as follows:
Initial Investment = $\sum_{n=1}^{H} \frac{\text{Depreciation}^n}{(1+\text{Discount Rate})^n} \times (\text{Tax Rate}) + \sum_{n=1}^{H} \frac{\text{Annual Costs}^n}{(1+\text{Discount Rate})^n} \times (1-\text{Tax Rate}) - \frac{\text{Residual Value}}{(1+\text{Discount Rate})^n}$

$$\sum_{n=1}^{N} \frac{\text{Initial kWh/kWp x (1 - System Degradation Rate)}^n}{(1+\text{Discount Rate})^n}$$

RDT Development Strategy

Reliability Demonstration Test Development Team

Who	Organization	Experience
David King	PV Evolution Labs	35 years of working in PV reliability and testing
Jenya Meydbray	PV Evolution Labs	PVEL CEO, developed and developed and executed SunPower's solar panel supply quality strategy
Jennifer Granata	Sandia Nat'l Labs	Head of Sandia PV Test, Evaluation, and Characterization Technologies
Michael Quintana	Sandia Nat'l Labs	Head of Sandia PV Systems Reliability, manufacturing, and Diagnostics
John Wohlgemuth	NREL	Over 35 years in PV reliability and testing, chair of TC82 WG2
Joseph Del Cueto	NREL	Over 25 years in PV technology development, NREL senior scientist
Ralph Romero	Black & Veatch	Over 20 years in the industry, Leads of B&V bankability team
Derek Djeu	Black & Veatch	Lead IE engagements for lenders and project finance of utility-scale solar PV

Common PV Module Failure Modes

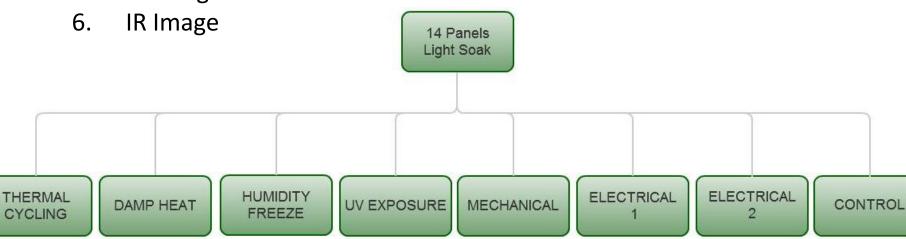
(no particular order)

Quick connector reliability (embrittlement, moisture ingress)	Cell/busbar arc to frame	
Junction box failure (poor solder joints, arcing, etc.)	Light-induced cell degradation (LID)	
Glass fracture	Outgassing of in-laminate materials (Chemical incompatibilities)	
Bypass diode failure	Backsheet embrittlement leading to exposed conductor	
Cracked cells (soldering processes, strain, etc.)	Busbar sharp edges, solder peaks, cutting through backsheet leading to exposed conductor	
Solder joint degradation	Electrochemical corrosion of busbars or cell metallization	
Reduced adhesion leading delamination	Polarization (charge build-up at interfaces)	
Optical degradation of encapsulant	Ion migration from glass to cell surface creating leakage paths, ground faults	

Correlation of Failures To Stress & Characterization (partial list)

FAILURE MECHANISM	STRESS	CHARACTERIZATION
Cracked cells	TC, Load	EL, LIV
Reduced adhesion leading to corrosion and/ or delamination	DH, HF, UV	Visual, wet hipot, LIV
Light-induced cell degradation	Sun Soak	LIV
Delamination / Outgassing of in-laminate materials (Chemical incompatibilities)DH, HFWet Hipot, Visual, UV-Vis		Wet Hipot, Visual, UV-Vis
Polarization (charge build-up at interfaces)	LT V Bias	EL, LIV

"...it would be counterproductive to require a test that doesn't correlate with field experience", Sarah Kurtz, NREL


INFO@PVEL.COM - www.PVEL.com

Test Plan

- Objective: Comprehensive assessment of all failure modes
- Test Duration: 5 Months

Module Characterization

- 1. Visual Inspection
- 2. Light IV
- 3. Dark IV
- 4. Wet Hipot at 1kV
- 5. EL Image

Test Plan – Continued

Thermal Cycling (600 Cycles)

- 1 LIV + Visual Inspection
- 2 Outdoor exposure for 5kWh
- 3 Module Characterization
- 4 TC 200 cycles W/current injection
- 5 Module Characterization
- 6 TC 200 cycles W/current injection
- 7 Module Characterization
- 8 TC 200 cycles W/current injection
- 9 Module Characterization
- 10 Diode Test for each cell string

Damp Heat (2,000 hrs)

- 1 LIV + Visual Inspection
- 2 Outdoor exposure for 5kWh
- 3 Module Characterization
- 4 DH 1000 hrs
- 5 Module Characterization
- 6 DH 500 hrs
- 7 Module Characterization
- 8 DH 500 hrs
- 9 Module Characterization
- 10 Diode Test for each cell string

Test Plan – Continued

Humidity Freeze (30 cycles)

- 1 LIV + Visual Inspection
- 2 Outdoor exposure for 5kWh
- 3 Module Characterization
- 4 HF 10 cycles
- 5 Module Characterization
- 6 HF 10 cycles
- 7 Module Characterization
- 8 HF 10 cycles
- 9 Module Characterization
- 10 Diode Test
- 11 Static Mechanical Load

UV (125 kWh at 90C) LIV + Visual Inspection 1 Outdoor exposure for 5kWh 2 LIV + Visual Inspection 3 UV 125 kWh with Imp injected 4 Module Characterization 5 **Diode Test** 6

Test Plan – Continued

Mechanical

- 1 LIV + Visual Inspection
- 2 Outdoor exposure for 5kWh
- 3 Module Characterization
- 4 1,000 mechanical load cycles
- 5 Module Characterization
- 6 TC 50 cycles
- 7 Module Characterization
- 8 HF 10 cycles
- 9 Module Characterization
- 10 Diode Test

Electrical - 1

- 1 LIV + Visual Inspection
- 2 Outdoor exposure for 5kWh
- 3 Hot Spot Test
- 4 LIV + Visual Inspection
- 5 EL Image
- 6 IR Image
- 7 + 1kV bias 1000 hrs (40C, < 50% RH)
- 8 LIV + Visual Inspection
- 9 EL Image
- 10 IR Image
- 11 Hot Spot Test
- 12 Bypass Diode Thermal Test
- 13 Diode Test

Test Plan – Continued

Electrical - 2

- 1 LIV + Visual Inspection
- 2 Outdoor exposure for 5kWh
- 3 Hot Spot Test
- 4 LIV + Visual Inspection
- 5 EL Image
- 6 IR Image
- 7 1kV bias 1000 hrs (40C, < 50% RH)
- 8 LIV + Visual Inspection
- 9 EL Image
- 10 IR Image
- 11 Hot Spot Test
- 12 Bypass Diode Thermal Test
- 13 Diode Test

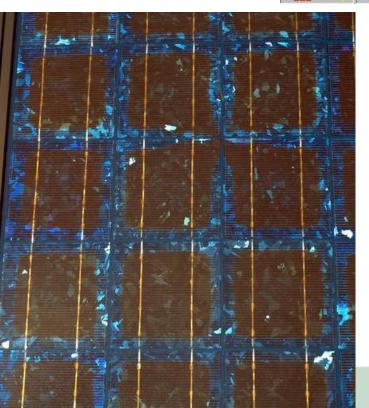
Control

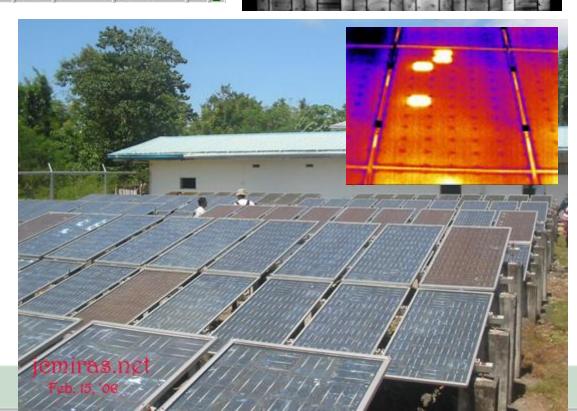
1 Outdoor exposure for 5kWh

LIV when testing modules under stress test

Store in dark with leads shorted when between tests

Following tests to be performed at the end


- 2 LIV + Visual Inspection
- 3 EL Image
- 4 Wet Hipot at 1kV
- 5 IR Image


Things To Be Careful Of

What	PVEL Capabilities
Spectral Mismatch	Tester 2 times better than Class A spectrum (recently certified Class A+A+A+)
Light Uniformity	Better than 0.3% across panel (10 times better than Class A)
Current Injection for EL, IR, TC	Computer controlled custom system
Sample temperature Uniformity	Unique laminar air flow chambers (top to bottom air flow)
UV spectrum and intensity	Spectroradiometer characterization
Point loading in Mechanical Testing	Patented bladder based dynamic load tester

Thank You

