Long term outdoor exposure in different climate zones

Nicolas Bogdanski
TÜV Rheinland Energie und Umwelt GmbH
Am Grauen Stein, 51105 Köln, Germany
Tel.: +49 221 806 7441, Fax +49 221 806 1350
E-Mail: nicolas.bogdanski@de.tuv.com
TÜV Rheinland operates 6 accredited PV laboratories (Cologne, Bangalore, Daya/Taiwan, Yokohama, Shanghai and Tempe/Arizona)

Test sites all over the world

- arid
- moderate
- mediterranean
- industrial
- maritime/tropical
- tropical
German joint project ‘PV reliability’
Project description

Study of outdoor weathering effects is part of a German research project focussing on “PV reliability” (2005 – 2009 – 2013)

Supported by the German government

To contribute to the correlation of outdoor weathering and lab testing including the development of new test methods to detect degradation earlier

Institutes involved in outdoor exposure studies

TÜVRheinland®
(Fraction coordination outdoor weathering)

Fraunhofer ISE
(Project co-ordinator)
German joint project 'PV reliability' weathering sites

Zugspitze, Germany, alpine

Sde Boker, Israel, arid

Gran Canaria, Spain, maritim

Cologne, Germany, moderate

Serpong, Indonesia, tropical

Tempe, Arizona, arid
Outdoor exposure weather

<table>
<thead>
<tr>
<th>Test location</th>
<th>Daily average kWh/m²</th>
<th>Yearly integral kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>3.0</td>
<td>1092</td>
</tr>
<tr>
<td>Mountain*</td>
<td>2.7*</td>
<td>994*</td>
</tr>
<tr>
<td>Desert</td>
<td>6.2</td>
<td>2281</td>
</tr>
<tr>
<td>Tropical</td>
<td>4.7</td>
<td>1556</td>
</tr>
</tbody>
</table>

* Sensor partially covered by snow

<table>
<thead>
<tr>
<th>Test location</th>
<th>Average rel. humidity in %</th>
<th>Aver. Module Temp in °C</th>
<th>Min. Module Temp. in °C</th>
<th>Max. Module Temp. in °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>74.5</td>
<td>15.8</td>
<td>-17.9</td>
<td>62.2</td>
</tr>
<tr>
<td>Mountain*</td>
<td>76.8</td>
<td>1.2*</td>
<td>-23.2*</td>
<td>54.8</td>
</tr>
<tr>
<td>Desert</td>
<td>63.8</td>
<td>21.7</td>
<td>-9.1</td>
<td>69.6</td>
</tr>
<tr>
<td>Tropical</td>
<td>86.6</td>
<td>30.8</td>
<td>15.3</td>
<td>70.1</td>
</tr>
</tbody>
</table>
Outdoor exposure
weather

- largest module temperature gradient found at Zugspitze amounts to 70°C
- large difference to gradient used for IEC testing (125°C)
Outdoor exposure proceeding

Reference module:
Dark storage at TÜV Rheinland

Installation of 3 test samples of 7 module types at any test location:
- approx. 30 m² installed module area
- Operation via resistive load

Re-shipment and re-measurement:
After 1, 2, 3 years
Outdoor exposure
3 years exposure

Delta Pmax at Zugspitze

- largest degradation found for all locations
- up to -6.6% power loss
- major defects caused by cell breakage
Outdoor exposure
3 years exposure

- Degradation mostly in the range of the measurement uncertainty
- M4 suffers from solarization of glass
Outdoor exposure
3 years exposure

delta Pmax at Sde Boqer

- Degradation for some modules slightly larger than measurement uncertainty
- M4 suffers from solarization of glass
- Modules were frequently cleaned
Outdoor exposure
3 years exposure

- Degradation for some modules slightly larger than measurement uncertainty
- M4 suffers from solarization of glass
Outdoor exposure
visual changes

- Power loss up to -3.3% due to soiling at the tropical location (reversible)
Outlook exposure

visual changes

- power loss up to -3.3% due to soiling at the tropical location (reversible)

- power loss up to -6.6% due to cell breakage at the high mountain location caused by high snow and wind loads (low T => elastic modulus high, stress more easily leads to cell breakage)
Outdoor exposure
visual changes

- Power loss up to -3.3% due to soiling at the tropical location (reversible)

- Power loss up to -6.6% due to cell breakage at the high mountain location caused by high snow and wind loads

- Snow-load also causes other defects such as destruction of the module frame

- No isolation failures for none of the modules exposed!
Outdoor exposure
3 years exposure

3 years at Serpong

- different degradation mechanisms impact on different module parameters
- solarization, transmission loss and soiling \Rightarrow I_{sc}
- cell corrosion, contact corrosion and busbar degradation \Rightarrow FF (R_s)
Outdoor exposure

- average power degradation after 3 years for all locations (despite Zugspitze) is -0.7%

- this value is still in the range of the measurement uncertainty

- secure degradation indication by means of power loss requires more than 3 years of outdoor weathering

- more sophisticated diagnostic tools are needed to detect degradation earlier (before power loss is detectable)
Conclusions for outdoor weathering

- the big dilemma is: companies must rely on relatively short outdoor exposure durations (due to product cycles), detection of reliable degradation values though takes time

- only the determination of significant outdoor degradation data enables a reliable correlation of lab and outdoor degradation

- power degradation is actually a superposition of several degradation mechanisms which should be evaluated (measured) separately to correlate them to lab values

- outdoor exposure is inevitable to reveal degradation that is not found in lab testing
Thank you for your interest