Overview of PV Standards Activities at SEMI

James Amano
Senior Director, Standards and EHS
July 2011
SEMI and the Foundation of the PV Group

• **Who is SEMI?**

 – Global industry trade association with offices in US, Belgium, Germany, France, China, Taiwan, Singapore, Korea, Japan, Russia, and India

 – 1800+ member companies (500+ PV)

 – Established 1970 to serve the semiconductor manufacturing supply chain

 • Expanded into the PV market segment in 2008

 – Today we serve members in:

 • Semiconductor, Photovoltaic, Emerging Markets – MEMS, LED/SSL, Printed Electronics, and Nanotechnology and Flat Panel Display
SEMI Member Companies participate in the global manufacturing supply chains of:

- Semiconductor
- **Photovoltaic**
- Flat Panel Display
- Nanotechnology
- MEMS
- LED / SSL
SEMI PV Group - An Introduction

• **Our member companies** provide cells, modules, equipment and materials to the global manufacturing supply chain.

• **Our mission** is to advance the growth and profitability of PV Group members through sustained long term growth of the global PV Energy Industry with focus on:
 • Continuous manufacturing cost reductions
 • Global market transformation
 • Sustainable business practices

• **We accomplish our mission through**
 • International standards development
 • Networking events
 • Public Policy advocacy
 • Environmental, Health & Safety support
 • Market information & Statistics
 • Technology Roadmap development
Our Focus is Manufacturing

- All SEMI core manufacturing competencies extended to PV
- Standards | Public Policy | Market intelligence | EHS | Education | Events
- 500+ SEMI member companies form the PV Group
 - Many with expertise in semiconductor manufacturing
- Over 100 PV member companies focused primarily on solar (pure play)
SEMI International Board of Directors
Energy/PV Solar Standing Committee

• M. Splinter, President & CEO **Applied Materials** – Committee Chair
• S. Kohyama, President & CEO **Covalent Materials** Corporation
• E. Weber, Director **Fraunhofer-Institute** for **Solar** Energy Systems
• Z. Shi, Founder, Chairman & CEO **Suntech** Power Holdings
• T. Higashi, Chairman & CEO **Tokyo Electron** Ltd.
PV Group – Progress Through Collective Industry Engagements

Regional PV Advisory Committees provide strategic guidance to deliver on specific objectives and tasks.

Committees established in Europe, North America, China, India, Taiwan and Korea.

US PV Advisory Committee focus

- Manufacturing / Jobs
- Public policy / Energy policy
- EH&S / Sustainability
Outline

• The need for SEMI PV Standards
 • Global SEMI PV Standards Organization
 • Published SEMI PV Standards
 • SEMI Safety Guidelines for PV
• How to Get Involved
• Background
The Need for PV Standards

• The PV industry has few standards to support the **manufacturing** process and help achieve cost reduction and process efficiency goals

• The PV market, already large, is growing rapidly, with many new companies entering the manufacturing supply chain

• Different applications and processes lead to diverse manufacturing challenges –this is where industry standards can play a critical role by:
 – Bringing the global supplier and customer communities together
 – Collectively reducing the number of options in a given process
 – Agreeing on common parameters and terminology
Why SEMI?

• Similarity between semiconductor, FPD and PV manufacturing – many SEMI Standards immediately applicable
• Well-established (35+years), transparent process for developing international consensus manufacturing Standards
• Global infrastructure serving major PV manufacturing regions
• Over 500 volunteer experts working in SEMI PV Standards Activities, led by PV industry veterans
Outline

• The need for SEMI PV Standards
• Global SEMI PV Standards Organization
• Published SEMI PV Standards
• SEMI Safety Guidelines for PV
• How to Get Involved
• Background
PV Standards Developing Organizations

Application of International Standards in the Photovoltaic Industry

- Equipment
- Parts
- Material
- Cell Manufacturer

- Module Manufacturer
- PV System Manufacturer
- Market & End-User

SEMI
IEEE
DIN
ASTM
Cenelec
IEC
ISO
UL
SEMI PV Standards Organization

- Europe PV Committee
 - Int’l PV Analytical Test Methods TF
 - PV Ribbon TF
 - PV Silicon Materials TF
- North America PV Committee
 - Int’l PV Analytical Test Methods TF
 - PV Gas, Liquid Chemicals & Water TF
 - PV Electrical & Optical Properties TF
 - PV Materials TF
 - PV Carrier TF
- Taiwan PV Committee
 - c-Si Cell Appearance TF
 - Vibration Test Method TF
 - PV Cell Vibration Test Method TF
 - PV Wafer Measurement Method TF
 - Equipment Interface Stds Coordination WG
- Japan PV Materials Committee
 - Japan PV Materials TF
 - Japan PV Wafer Traceability TF
- Japan PV Automation Committee
 - PV Equipment Interface Spec. TF
 - PV Transport Carrier TF
- Europe PV Automation Committee
 - PV Equipment Interface Spec. TF
 - PV Wafer Traceability TF
Notable Companies Involved in Developing SEMI PV Standards

- acp-IT AG
- Air Liquide
- Air Products
- AIS Automation Dresden GmbH
- AIST
- Applied Materials
- Asahi/America, Inc.
- ATMI
- Bosch Solar Energy AG
- BP Solar
- Brewer Science
- CA Solar
- Canon ANELVA Corporation
- CH2M Hill
- China Sunergy
- Chroma ATE INC
- Cimetrix
- Corning
- Covalent Materials Corporation
- Daihen Corporation
- Dainichi Shoji K.K.
- DAINIPPON
- Delsolar
- Despatch Industries
- Deutsche Solar AG
- Dow Corning
- DuPont
- Entegris, Inc.
- Evans Analytical Group
- Ever Energy Co. Ltd.
- Evergreen Engineering
- First Solar
- Fraunhofer
- Freiberg
- GCL
- George Fischer
- GT Solar
- Hemlock Semiconductor
- Hirata Corporation
- Hitachi Kokusai Electric Inc.
- Hynix Semiconductor Inc.
- ICL Performance Products LLC
- IMEC
- ITRI
- Japan Solar Silicon
- Jonas&Redmann Automation
- KANEKA CORPORATION
- KLA-Tencor
- Korea Institute of Lighting Technology
- LDK
- LG. Display
- Linde LLC
- M+W Zander FE GmbH
- Manz Automation AG
- Matheson Tri-Gas
- MEMC Electronic Materials, Inc.
- Meyer Burger
- Mitsubishi Heavy Industries, LTD
- Motech (Solar Division)
- Nippon Steel Corp.
- Nisshinbo Mechatronics Inc.
- NIST
- NREL
- OC Oerlikon Balzers AG
- OCI
- Pall Corporation
- Parker Hannifin
- PEER Group GmbH
- Q-Cells SE
- REC Silicon
- RENA GmbH
- Renesola
- Roth & Rau - Ortner GmbH
- Schiller Automation
- Schott Solar AG
- Semilab
- Sinton Instruments
- Solar World
- SUMCO
- Sunicon AG
- Suntech
- Swagelok
- Tokuyama corporation
- Tokyo Electron Ltd.
- Trina Solar
- TUV
- UL
- ULVAC
- Wacker Chemie AG

Updated June 9, 2011
Current High Profile Standards Activities

• Silicon Feedstock Materials for PV Application
 – *Document 4805B*, Specification for Virgin Silicon Feedstock Materials for Photovoltaic Applications
 • Developed with input from major suppliers around the world
 • Feedback received from SUMCO, GCL, LDK, and other major Chinese companies
 • APPROVED, PUBLISHED as SEMI PV17-0611

• Silicon Wafer for PV Application
 • Feedback received from GCL, LDK, and Trinasolar
 • Approved at committee meeting during Intersolar NA
Outline

• About SEMI PV Group
• The need for SEMI PV Standards
• Global SEMI PV Standards Organization
• Published SEMI PV Standards
• SEMI Safety Guidelines for PV
• How to Get Involved
• Background
SEMI PV Standards History

- PV Committee formed in 2007, initially in Europe and North America, now also in Japan and Taiwan
- PV Automation Committee formed in 2009 to focus on equipment automation issues
- PV Materials Committee formed in 2010
- Increased interest from China, WG in process of formation
SEMI PV Standards [1/3]

 - First standard test method that specifically addresses the evaluation of some types of PV Silicon feedstock.
- **PV2-0709E**: Guide for PV Equipment Communication Interfaces
 - Unified communication standard between PV production equipment and the shop floor
- **PV4-0211**: Specification for Range of 5th Generation Substrate Sizes for Thin Film Photovoltaic Applications
 - Provides a range of substrate sizes for equipment applicable to 5th generation substrates
SEMI PV Standards [2/3]

- **High Purity Water**
 - PV3-0310: Guide For High Purity Water Used In Photovoltaic Cell Processing

- **Chemicals**
 - PV5-1110: Guide for Oxygen (O$_2$), Bulk, Used In Photovoltaic Applications
 - PV6-1110: Guide for Argon (Ar), Bulk, Used In Photovoltaic Applications
 - PV7-1110: Guide for Hydrogen (H$_2$), Bulk, Used In Photovoltaic Applications
 - PV8-1110: Guide for Nitrogen (N$_2$), Bulk, Used In Photovoltaic Applications
 - PV14-0211: Guide For Phosphorus Oxychloride, Used In Photovoltaic Applications

- **Acids**
 - PV11-1110: Specifications for Hydrofluoric Acid, Used In Photovoltaic Applications
 - PV12-1110: Specifications for Phosphoric Acid, Used In Photovoltaic Applications
SEMI PV Standards [3/3]

- **PV9-1110**: Test Method For Excess Charge Carrier Decay In PV Silicon Materials By Non-Contact Measurements Of Microwave Reflectance After A Short Illumination Pulse
 - Quantifies test method to obtain consistent results from the measurement of silicon materials
- **PV10-1110**: Test Method For Instrumental Neutron Activation Analysis (INAA) Of Silicon
 - Defines explicitly sample preparation, measurement procedure and data analysis of silicon
- **PV13-0211**: Test Method for Contactless Excess-Charge-Carrier Recombination Lifetime Measurement in Silicon Wafers, Ingots, and Bricks Using an Eddy-Current Sensor
 - Carrier lifetime measurements provide one of the most sensitive metrics for evaluating feedstock quality
- **PV15-0211**: Test Method for Measuring BRDF Metrics to Monitor the Surface Roughness and Texture of PV Materials
 - Provides a way to communicate BRDF (light scatter) specifications. Light scatter is a sensitive indicator of surface roughness or texture
Other SEMI Standards Applicable for PV Manufacturing [1/2]

- SEMI E10 - Specification for Definition and Measurement of Equipment Reliability, Availability, and Maintainability (RAM)
- **SEMI F47 - Specification for Semiconductor Processing Equipment Voltage Sag Immunity**
- SEMI M6 - Specification for Silicon Wafers for Use as Photovoltaic Solar Cells
- SEMI M44 - Guide to Conversion Factors for Interstitial Oxygen in Silicon
- SEMI MF391 - Test Method for Minority Carrier Diffusion Length in Extrinsic Semiconductors by Measurement of Steady-State Surface Photovoltage
- SEMI MF1188 - Test Method for Interstitial Oxygen Content of Silicon by Infrared Absorption With Short Baseline
Other SEMI Standards Applicable for PV Manufacturing [2/2]

- SEMI MF1619 - Test Method for Measurement of Interstitial Oxygen Content of Silicon Wafers by Infrared Absorption Spectroscopy with p-Polarized Radiation Incident at the Brewster Angle
- SEMI MF1708 - Practice for Evaluation of Granular Polysilicon by Melter-Zoner Spectroscopies
- SEMI MF1727 - Practice for Detection of Oxidation Induced Defects in Polished Silicon Wafers
- SEMI MF1809 - Guide for Selection and Use of Etching Solutions to Delineate Structural Defects in Silicon
- SEMI MF1810 - Test Method for Counting Preferentially Etched or Decorated Surface Defects in Silicon Wafers
- **SEMI S2** - Environmental, Health, and Safety Guideline for Semiconductor Manufacturing Equipment
- **SEMI S26** - Environmental, Health, and Safety Guideline for FPD Manufacturing System
Outline

• The need for SEMI PV Standards
• Global SEMI PV Standards Organization
• Published SEMI PV Standards
• SEMI Safety Guidelines for PV
• How to Get Involved
• Background
EHS Standards - Opportunities for PV

- PV industry has some common ground with semiconductor (c-Si) and FPD (thin film) industry
- This provides opportunities through use/adaptation of existing SEMI EHS Standards
 - to avoid major environmental events and regulatory interference
 - to learn from these industries’ failures AND successes
- SEMI S2 - Environmental, Health, and Safety Guideline for Semiconductor Manufacturing Equipment
- SEMI S8 - Safety Guidelines for Ergonomics Engineering of Semiconductor Manufacturing Equipment
- SEMI S26 - Environmental, Health, and Safety Guideline for FPD Manufacturing System
SEMI “S” Guidelines for PV?

- SEMI “S” Guidelines currently cover:
 - Capital manufacturing equipment
 - Facilities and support equipment
 - Documentation
 - Environmental impact/planning
 - Personnel training/site EHS management
 - EHS vendor management
SEMI S2

- SEMI S2 – Environmental Health and Safety Guideline for Semiconductor Manufacturing Equipment
 - 27 Sections cover all hazards:
 - Electrical, Mechanical, Chemical, Radiation, Ergonomics, Environmental, Ventilation & Exhaust, Fire Risk, Hazardous Energy Control, Seismic, Lasers, Sound Pressure Level
 - One of the most universally recognized and implemented SEMI Standards in the industry
SEMI S8

• Safety Guidelines for Ergonomics Engineering of Semiconductor Manufacturing Equipment
 – Ergonomics and Human Factors is one of the most frequent causes of workplace injuries for the Semiconductor Industry
 – Directly applies to Substrate Handling, Module Handling, Cell Carriers, Equipment Maintenance, Elevated Work Areas

• S8 and S2 are the two most essential guidelines for the PV industry.
SEMI S26

- Environmental, Health and Safety Guideline for FPD Manufacturing System
- FPD-specific version of SEMI S2
- S2 modified by EHS Committee's FPD System Safety Task Force to address specific concerns with FPD
- Key Differences:
 - system integration issues
 - shared hazards
 - material handling
 - automation
SEMI EHS Guidelines a Benefit to the PV Industry?

• Standardization allows Suppliers and End-Users to become more efficient
 – Common design approaches reduce negotiations and delays
 – Fewer “Specials”
 – Faster delivery of equipment
 – Fewer inspections
 – Less end-user and supplier resource drain
 – Each has the opportunity to provide input to the standards (committee work, ballot review)
Risks of Doing Nothing?

- Major event in a PV fab
 - Fire, environmental release or death
 - Insurance pressure will likely increase
 - Environmental event would tarnish “Green” industry reputation
 - Criminal/civil prosecution
 - Future financing may be put in jeopardy
Risks (Continued)

- Increased Regulatory Involvement
 - Industry input often not considered by governments creating new regulations
 - Equipment may be forced to meet requirements not intended for the PV Application
 - New Certifications
 - e.g. Oregon Field Labeling
 - CE Marking +
 - PV industry could be inviting increased regulatory involvement unless it demonstrates the ability to "self-regulate."
Opportunities?

- Improve time to delivery
- Reduce duplicated efforts
- Common language and approach
- Design flexibility
- Industry specific requirements
- Reduce cost for design, manufacturing, test and install
- Improve repeatability/reliability
Outline

• The need for SEMI PV Standards
• Global SEMI PV Standards Organization
• Published SEMI PV Standards
• SEMI Safety Guidelines for PV
• How to Get Involved
• Background
Get involved!

• Get your company’s support
• Register at www.semi.org/standardsmembership
• Establish contact with other regions’ Technical Committees and Task Forces
 – Gather information on activities and trends
 – Attend regional meetings
• Use SEMI Standards
 – Benefit from cost reduction and efficiency improvements
 – Purchase a SEMIViews license
More information:

James Amano
jamano@semi.org

www.pvgroup.org/standards

www.semi.org/standards
Contact Information

- PV Standards – General
 - James Amano (jamano@semi.org)
- PV Standards – Europe
 - Carlos Lee (clee@semi.org)
- PV Standards – North America
 - Kevin Nguyen (knguyen@semi.org)
- PV Standards – Japan
 - Akiko Yamamoto (ayamamoto@semi.org)
- PV Standards – China
 - Tiantian Yu (tyu@semi.org)
- PV Standards – Taiwan
 - Catherine Chang (cchang@semi.org)
- PV Standards – Korea
 - Natalie Shim (eshim@semi.org)
- PV Standards – India
 - Vijay Kundaji (vkundaji@semi.org)
Outline

• The need for SEMI PV Standards
• Global SEMI PV Standards Organization
• Published SEMI PV Standards
• SEMI Safety Guidelines for PV
• Case Study: SEMI PV2
• How to Get Involved

• Background
Why Standards?

• Define interfaces (hardware and software)
• Clearly characterize materials
• Improve supply chain communication
• Optimize environment, health and safety for the operators and others in the industry

• Results
 – Cost reduction
 – Focus on product differentiation
 – Acceleration of product development
 – Accepted verification procedures (test methods)
Economic Impact of Standards

- **US National Institute of Standards and Technology (NIST) Study**
 - Calibration, Standard Test Methods, and Software Standards
 - $9.6 billion in benefits between 1996 and 2011
- **Association Française de Normalisation (AFNOR) Study**
 - Over 70% of companies participating in standardization reported that it enabled them to anticipate future market requirements
- **German Industry Study (DIN)**
 - Standards contribute more to economic growth than patents and licenses
- **UK Department of Trade and Industry**
 - Standards contribute £2.5 billion annually to economic growth in the UK
SEMI International Standards Program History

• **Key Topics**
 - 1973
 - Silicon Wafers
 - Late 1970’s
 - Chemicals and Gases
 - Metrology
 - Facilities
 - Late 1980’s
 - Factory Automation
 - Early 1990’s
 - Safety Guidelines
 - 1994
 - 300mm
 - 2007
 - Photovoltaics
 - 2008
 - 450mm
 - 2011
 - HB LED and 3DS-IC

• **New Regions**
 - 1973
 - United States
 - 1980’s
 - Japan
 - Europe
 - 1990’s
 - Taiwan
 - Korea
 - 2010
 - China
Document Development Path

INDUSTRY NEEDS

- Technology Trends
- Suppliers
- Users
- Other Stakeholders

Idea to Committee

Draft (Task Force) → Ballot Distribution Approval → Ballot Submission → Ballot Voting / Tallying → Ballot Adjudication

Use

Publishing

Procedural Review
The SEMI Standards Program
Today

• All aspects of an automated fab are addressed
• Over 3,500 volunteer experts
 – 23 global technical committees
 – 200 task forces
• Currently over 800 SEMI Standards and Safety Guidelines available
High Profile SEMI Standards

- Wafer Dimensions
- Metrics
 - Factory efficiency, equipment reliability, and availability
- Equipment Interface
 - SEMI Equipment Communication Standards (SECS)
 - Generic Equipment Model (GEM)
- Environmental, Health and Safety
 - Safety for semiconductor (S2) and FPD (S26)
 - Energy conservation (S23)
- 300 mm, 450 mm
 - Automated Material Handling Systems
- Photovoltaic
 - Materials, equipment communications
- Anti-counterfeiting / Product Authentication
Organizational Structure

<table>
<thead>
<tr>
<th>SEMI Board of Directors</th>
<th>Oversees the SEMI Standards Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Standards Committee</td>
<td>Develops and maintains the SEMI Standard Regulations. Oversees program coordination among geographical regions</td>
</tr>
<tr>
<td>Regional Standards Committee</td>
<td>Provides continuing supervision of standards development in a given geographical area</td>
</tr>
<tr>
<td>Technical Committees</td>
<td>Provides the technical expertise in the standards process</td>
</tr>
<tr>
<td>Subcommittees</td>
<td>Oversees task force activities and submits their reports to the technical committee</td>
</tr>
<tr>
<td>Task Forces</td>
<td>Develops and maintains most of the standards</td>
</tr>
</tbody>
</table>
Complete list - Companies Involved in Developing SEMI PV Standards [1/2]

6N Silicon Inc
a2peak power Co., Ltd.
Accademia Europea Bolzano
acp-IT AG
Adema Technologies Inc
advanced clean production Information Technology
Air Liquide
Air Products
Air Products and Chemicals, Inc.
AIS Automation Dresden GmbH
AIST
Applied Materials
Applied Spectra, INC
Asahi/America, Inc.
Ascari Limited
Atelier Ishikawa
ATMI
BayTech Group
BEIJING SEVENSTAR ELECTRONICS CO.LTD
Bosch Solar Energy AG
BP Solar
Brewer Science
Bruce Technologies Inc
BT Imaging
CA Solar
camLine
Canon ANELVA Corporation
centrotherm photovoltaics Asia
Centrotherm Thermal Solutions GmbH + Co.
C-Gerhards GmbH i.G
CH2M Hill
Chroma ATE INC
CI Industrial Safety Consulting, LLC
CIS Forschungsinstitut für Mikrosensorik und CMS/ITRI
Conexant Systems
Cook Engineering, Inc.
Covalent Materials Corporation
Daewon SPIC
Daihen Corporation
Dainichi Shoji K.K.
DAINIPPON
Delsolar
Despatch Industries
Deutsche Solar AG
Dow Corning
DuPont De Nemours International S.A.
DuPont Teijin Films
ECN Solar Energy
Energy Innovation Associates
ENspring
Entegris, Inc.
Evans Analytical Group
Ever Energy Co. Ltd.
Evergreen Engineering
Exponent Inc.
Fraunhofer
Freiberg
Fuji Electric Advanced Technology Co., Ltd.
GEASOL ltd
Gintech Energy Cooperation
Gnostic Systems
Gsonic Systems
GTsolar
Haas Training Solutions
Hager + Elsässer
Heltina AG
Hemlock Semiconductor Corporation
Hirata Corporation
Hitachi Kokusai Electric Inc.
Hong Ming Technology Co., Ltd.
Hynix Semiconductor Inc.
IAPMO
ICL Performance Products LLC
IE&S GmbH
IIT Roorkee
Industrial Technology Research Institute
InnoLas Semiconductor GmbH
InReCon AG
Institut für Solarenergieforschung
Instituto Tecnologico Superior de Irapuato
ITRI
Japan Radio Co., Ltd.
Japan Solar Silicon
JC’s Chunson Limited
Jonas&Redmann Automationstechnik GmbH
KANEKA CORPORATION
KesslerConsult
KEYENCE
King Design Industrial Co., Ltd.
KLA-Tencor
Companies Involved in Developing SEMI PV Standards [2/2]

- Korea Institute of Lighting Technology
- Lanco Solar Pvt Ltd
- Lewis Bass International Inc
- LG Electronics, Inc.
- LG Display
- Linde LLC
- M+W Zander FE GmbH
- Malema Engineering
- Manz Automation AG
- Materials & Metrology
- Matheson Tri-Gas
- MEMC Electronic Materials, Inc.
- Meyer Burger AG
- Micronit
- Mitsubishi Electric Corporation
- Mitsubishi Heavy Industries, LTD
- Mitsubishi Bussan Corporation Limited
- Mizuho Information & Research Institute, Inc
- MOSERBAER PHOTOVOLTAIC LIMITED
- Motech (Solar Division)
- Nippon Steel Corp.
- Nisshinbo Mechatronics Inc.
- NIST
- Nokia Siemens Networks
- NREL
- NS Solar Material Co., Ltd.
- NSN
- OC Oerlikon Balzers AG
- OCI
- Omron
- Op-tection GmbH
- OptiSolar
- Orient Service Corporation
- Pall Corporation
- Parker Hannifin
- PEER Group GmbH
- Polar Star Research, LLC
- Prediktor AS
- PVTC/ITRI
- Q-Cells SE
- QSES Inc.
- R.A.Smythe, Management Consultants
- RAPT Industries, Inc.
- Raytex Corporation
- REC Silicon
- RENA GmbH
- Roth & Rau - Ortner GmbH
- RTS Corporation
- Safe Techno Limited
- Salmon Leap Associates India (p) Ltd
- Salus
- Schott Solar AG
- Semilab
- Semisol
- SEMITRAC
- Sentech Instruments GmbH
- Sigma-Aldrich
- Silicon Solar
- Siliken Chemicals
- SINTEF Materials and Chemistry
- Sinton Instruments
- SITEX 45 SRL
- Sixtron Advanced Materials
- Solar World
- SolarTech
- Solland Solar Cells GmbH
- SPIL
- SUMCO
- Sunicon AG
- Suntech Power Holdings Co., Ltd.
- Swagelok
- Tainergy Tech Co., Ltd
- TAIYO NIPPON SANSO CORPORATION
- The Scatter Works, Inc.
- TNO Industrie en Techniek
- Tokuyama corporation
- Tokyo Electron Ltd.
- Toray Research Center, Inc.
- Tronic International Pte Ltd
- TUV
- ULVAC
- Underwriters Laboratories Taiwan
- UNI3 System Co., Ltd.
- Universidad Carlos III de Madrid
- University of Oxford
- Voltaix. LLC
- VQC
- Wacker Chemie AG
- Yaskawa Electric Corporation
Crystalline Technology and Manufacturing (CTM) Group

- European group of eight crystalline solar cell manufacturers (Q-Cells, Deutsche Cell, Bosch Solar Energy, Schott Solar, Sovello, Sunways, SolarWatt and Solland) is working together within SEMI in a pre-competitive environment to address the technology challenges facing the photovoltaic industry.

- The priority of the CTM Group will be the definition of the development processes for raw materials, cell technology and cell manufacturing.

Crystalline Technology and Manufacturing (CTM) Group (2)

• The CTM Group has established a crystalline solar cell technology roadmap up to the year 2020
 – www.itrpv.net

• SEMI Contact:
 – Stephan Raithel, SEMI Europe
 – sraithel@semi.org