INDEPENDENT ENGINEER PERSPECTIVE
DIFFERENTIATING QUALITY PV
SAN FRANCISCO, CA
MARCH 6, 2012

Presented by : Ray Hudson – Director Solar Energy
BEW Engineering Overview

• **BEW Engineering**
 - Founded 2002 predecessor solar experience back to 1980s
 - San Ramon, CA, San Francisco, CA, Boston, MA, Seattle, WA, Houston, TX, Fort Collins, CO

• **Acquired by DNV in 2010**
 - Worldwide consultancy
 - Headquarters in Oslo, Norway

• **DNV acquired KEMA in February, 2012**
 - International Energy consultancy
BEW PV Services Today

- Technical Due Diligence – System-Level Evaluation
 - Before, during and after construction
 - Independent Engineering clients
 - Banks
 - Other financial institutions
 - Owner’s Engineering clients
 - Developers
 - Equity holders
- Technology Review “Bankability” – Key Component Review
 - Equipment manufacturers
 - Modules
 - Inverters, mounting systems
 - Mounting and Tracking systems
 - BOS
- PV System Design
 - Commercial
 - Utility Scale
- Other (testing, research, training, resource measurement...)

a DNV company
BEW TYPICAL SYSTEM REVIEW ELEMENTS

• Site evaluation
 • Topography, Shading, Soiling
• Solar resource determination
 • Long term
 • Variability P(X)
• Design and equipment review
 • Good practices
 • Safety
• Energy estimate – used for financial modeling
• Document review
 • Contracts
 • Permits
• O&M cost estimate
• Construction review
• Overall Risk Assessment
• Inspection
• System Test
• Performance Evaluation
• Final Completion
BEW IE PERSPECTIVE

- Clients need objective advice from an Independent Engineer
- Expertise and experience in PV systems, components, and history
- Objective
- Thorough
- Incorporate best available information
- Use best available methods
- Goal is accuracy!
INDEPENDENT ENGINEER VIEW

• Types of investors – different perspectives
 • Long-term financing
 • Concerned with long-term performance (5-20+ years)
 • Construction finance – short-term loan
 • Want to ensure completed project can be sold

• Long-term revenue stream depends on
 • Installed cost
 • Energy generation
 • O&M costs
 • Contract items (PPA energy rate, performance guarantee,...)
 • Economic factors (Interest rate, ITC, other incentives...)

• Identify and quantify project risks and uncertainty
 • Uncertainty in long term vs annual
 • Downside cases

• DETAILS MATTER!
 • Must be considered appropriately
GAPS AND OPPORTUNITIES FOR IMPROVEMENT

• Component Modeling – better data
 • Modules
 • Inverters

• Resource data
 • Key input to energy modeling
 • More and better sources

• Field system performance data
 • Feedback for refining system energy prediction methodology
 • Detailed review of individual long term systems

• O&M cost modeling
 • Additional and more complete data for improving models

• Uncertainty and Risk Analysis
 • Standardized methods and terminology
 • Understanding limitations

• Contractual agreements
 • Standardization opportunities
Predicting Energy Generation – PV Component Modeling

• PV Module
 • PV datasheets are essentially useless for modeling – insufficient data
 • Lack of transparency from manufacturers
 • Third party data needed for model
 • Data is needed from a statistically significant population of modules
 • Data is needed for specific model and power rating (i.e. don’t use 260W data for 280W module)
 • IV curves over range of irradiance levels (100W/m² to 1200W/m²)
 • IV curves over a range of temperatures (0°C to 80°C)
 • Measurements and models of seasonal variability for thin film
 • Reflection properties of glass

• Inverter
 • Thanks to CEC requirements, independent performance test data readily accessible for efficiency
 • Challenge for non-UL listed inverters to provide same data quality - standardization
 • Standards for derating on other factors (Voltage, temperature, elevation...)
 • Reliability data
 • O&M Cost data

• Degradation
 • Measurements of module light-induced degradation
 • Measurements of module long-term degradation
 • Measurement of system long term degradation
Thank you!

Further information at www.bewengineering.com

Raymond.Hudson@dnv.com
IE/OE Menu

<table>
<thead>
<tr>
<th>Task/Description</th>
<th>Client Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE EVALUATION</td>
<td>Site Visit, availability of site host personnel</td>
</tr>
</tbody>
</table>
| Evaluate site for suitability/feasibility of proposed installation; potential impact of the following on system construction and operation:
 - Solar Resource
 - Topography/shading
 - Site/soil condition
 - Security
 - Environmental factors
 - Military, other considerations | Site Visit, availability of site host personnel |
| **DESIGN & EQUIPMENT REVIEW** | Design drawings, project schedule, product Spec and Warranty Sheets. Interviews w/ engineers and designers |
| Review design for code compliance and conformance to customary solar engineering practice. Evaluate key Components:
 - Modules
 - Inverters
 - Tracker design
 - Balance of system
 - System integration | Design drawings, project schedule, product Spec and Warranty Sheets. Interviews w/ engineers and designers |
| **PERFORMANCE ESTIMATE** | Performance data, designer assumptions, Performance Guarantee |
| Estimate system performance:
 - Site-specific solar resource
 - System power ratings (cc/ac,STC/PTC, etc.)
 - 1st-year energy production
 - Life time energy production, including degradation | Performance data, designer assumptions, Performance Guarantee |
| **CONSTRUCTION SUPPORT REVIEW** | Supply & service contracts, project schedule, key subs list |
| Review and investigate Construction Support, identify potential hurdles & recommend solutions:
 - EPC Construction review
 - Supply & service contract terms & conditions
 - Key subcontractors
 - Installation schedule
 - Performance guarantee review | Supply & service contracts, project schedule, key subs list |
| **O&M REVIEW** | O&M Contract & Manual |
| Review and investigate Operations and Maintenance, identify potential hurdles and recommend solutions:
 - O&M cost estimate
 - O&M contract terms & conditions
 - O&M Manual
 - Key subcontractors | O&M Contract & Manual |
| **OVERALL RISK ASSESSMENT** | Schedules & Contracts |
| Summarize project risk in terms of potential impact on:
 - Construction schedule
 - System performance
 - Long term reliability
 - Performance guarantee review | Schedules & Contracts |
| **PERMIT STATUS REVIEW** | Permit submittals and approvals |
| Identify key permit and schedule milestones. Evaluate on-going status of permits including:
 - Building permits, easements, grading, dust, etc.
 - Incentive reservations & proof of progress
 - Utility interconnection/net metering/ FERC/ISO
 - Environmental permits | Permit submittals and approvals |
| **SITE INSPECTION** | Construction drawings and project schedule |
| Visit site to:
 - Verify as-built installation
 - Evaluate workmanship
 - Verify permit compliance
 - Verify schedule conformance
 - Perform or witness sub system testing
 - Develop punch list and check status as necessary | Construction drawings and project schedule |
| **SYSTEM TEST** | System fully operational and access to performance data where applicable |
| Witness or review data set to:
 - Verify minimum period of continued operation
 - Assess actual vs. predicted output
 - Other contractual measure of acceptable performance | System fully operational and access to performance data where applicable |
| **PERFORMANCE EVALUATION** | System fully operational |
| Complete or spot evaluation of array, tracker, inverter through the use of:
 - Spot voltage and current measurements
 - IV curves
 - As-installed array and system ratings
 - Independent performance monitoring | System fully operational |
| **FINAL COMPLETION** | Notice of Interim Completion prior to visit, Notice of Final Completion issued by the installer |
| Verify the completion accuracy of all items to be declared listed on the Final Completion Notice, such as:
 - System ready for full, uninterrupted commercial operation
 - System passed inspections with AHJ
 - Utility interconnection installation evaluation complete
 - System tests passed successfully | Notice of Interim Completion prior to visit, Notice of Final Completion issued by the installer |